Arrays.sort如何实现降序排序

发布时间:

在调用Arrays.sort()对数组进行排序时,默认是升序排序的,如果想让数组降序排序,有下面两种方法:

1.Collections的reverseOrder

import java.util.*;
 
public class Main {
    public static void main(String[] args) {
//        注意这里是Integer,不是int
        Integer[] arr={9,8,7,6,5,4,3,2,1};
        Arrays.sort(arr,Collections.reverseOrder());
        for(int i:arr){
            System.out.println(i);
        }
    }
}

2.利用Comparator接口复写compare

import java.util.*;
 
public class Main {
    public static void main(String[] args) {
        Integer[] arr={9,8,7,6,5,4,3,2,1};
        Comparator cmp=new CMP();
        Arrays.sort(arr,cmp);
        for(int i:arr){
            System.out.println(i);
        }
    }
}
class CMP implements Comparator<Integer>{
    @Override //可以去掉。作用是检查下面的方法名是不是父类中所有的
    public int compare(Integer a,Integer b){
//        两种都可以,升序排序的话反过来就行
//        return a-b<0?1:-1;
        return b-a;
    }
}

注意:如果需要改变默认的排列方式,不能使用基本类型(int,char等)定义变量,而应该用对应的类

Arrays.sort底层原理

概述

Collections.sort()方法底层调用的也是Arrays.sort()方法,下面我们通过测试用例debug,探究一下其源码,首先说一下结果,使用到了插入排序,双轴快排,归并排序

双轴快排(DualPivotQuicksort): 顾名思义有两个轴元素pivot1,pivot2,且pivot ≤pivot2,将序列分成三段:x < pivot1、pivot1 ≤ x ≤ pivot2、x >pivot2,然后分别对三段进行递归。这个算法通常会比传统的快排效率更高,也因此被作为Arrays.java中给基本类型的数据排序的具体实现。

大致流程:

Arrays.sort如何实现降序排序

快速排序部分展开

Arrays.sort如何实现降序排序

Arrays.sort如何实现降序排序

Arrays.sort如何实现降序排序

案例

	public static void main(String[] args) {
int[] nums = new int[]{6,5,4,3,2,1};
List<Integer> list = Arrays.asList(6, 5, 4, 3, 2, 1);
Arrays.sort(nums);
Collections.sort(list);
System.out.println(Arrays.toString(nums));
System.out.println(list);

}

运行结果

Arrays.sort如何实现降序排序

1 进入Arrays.sort()方法

/**
 * Sorts the specified array into ascending numerical order.
 *
 * <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort
 * by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm
 * offers O(n log(n)) performance on many data sets that cause other
 * quicksorts to degrade to quadratic performance, and is typically
 * faster than traditional (one-pivot) Quicksort implementations.
 *
 * @param a the array to be sorted
 */
public static void sort(int[] a) {
DualPivotQuicksort.sort(a, 0, a.length - 1, null, 0, 0);
}

Arrays.sort如何实现降序排序

方法上的注释

Arrays.sort如何实现降序排序

2 进入DualPivotQuicksort类内部的静态方法sort

方法上的注释

Arrays.sort如何实现降序排序

3 走sort的流程

Arrays.sort如何实现降序排序

Arrays.sort如何实现降序排序

1. 排序范围小于286的数组使用快速排序

 	// Use Quicksort on small arrays
if (right - left < QUICKSORT_THRESHOLD) {
sort(a, left, right, true);
return;
}
// Merge sort
......

2. 进入sort方法,判断数组长度是否小于47,小于则直接采用插入排序,否则执行3。

Arrays.sort如何实现降序排序

Arrays.sort如何实现降序排序

	 // Use insertion sort on tiny arrays
if (length < INSERTION_SORT_THRESHOLD) {
	   // Insertion sort
	   ......
}

3. 用公式length/8+length/64+1近似计算出数组长度的1/7。

// Inexpensive approximation of length / 7
int seventh = (length >> 3) + (length >> 6) + 1;

4. 取5个根据经验得出的等距点。

Arrays.sort如何实现降序排序

		/*
 * Sort five evenly spaced elements around (and including) the
 * center element in the range. These elements will be used for
 * pivot selection as described below. The choice for spacing
 * these elements was empirically determined to work well on
 * a wide variety of inputs.
 */
int e3 = (left + right) >>> 1; // The midpoint
int e2 = e3 - seventh;
int e1 = e2 - seventh;
int e4 = e3 + seventh;
int e5 = e4 + seventh;

5.将这5个元素进行插入排序

		// Sort these elements using insertion sort
if (a[e2] < a[e1]) { long t = a[e2]; a[e2] = a[e1]; a[e1] = t; }

if (a[e3] < a[e2]) { long t = a[e3]; a[e3] = a[e2]; a[e2] = t;
if (t < a[e1]) { a[e2] = a[e1]; a[e1] = t; }
}
if (a[e4] < a[e3]) { long t = a[e4]; a[e4] = a[e3]; a[e3] = t;
if (t < a[e2]) { a[e3] = a[e2]; a[e2] = t;
if (t < a[e1]) { a[e2] = a[e1]; a[e1] = t; }
}
}
if (a[e5] < a[e4]) { long t = a[e5]; a[e5] = a[e4]; a[e4] = t;
if (t < a[e3]) { a[e4] = a[e3]; a[e3] = t;
if (t < a[e2]) { a[e3] = a[e2]; a[e2] = t;
if (t < a[e1]) { a[e2] = a[e1]; a[e1] = t; }
}
}
}

6. 选取a[e2],a[e4]分别作为pivot1,pivot2。由于步骤5进行了排序,所以必有pivot1 <=pivot2。定义两个指针less和great,less从最左边开始向右遍历,一直找到第一个不小于pivot1的元素,great从右边开始向左遍历,一直找到第一个不大于pivot2的元素。

		 /*
 * Use the second and fourth of the five sorted elements as pivots.
 * These values are inexpensive approximations of the first and
 * second terciles of the array. Note that pivot1 <= pivot2.
 */
int pivot1 = a[e2];
int pivot2 = a[e4];
/*
 * The first and the last elements to be sorted are moved to the
 * locations formerly occupied by the pivots. When partitioning
 * is complete, the pivots are swapped back into their final
 * positions, and excluded from subsequent sorting.
 */
a[e2] = a[left];
a[e4] = a[right];
/*
 * Skip elements, which are less or greater than pivot values.
 */
while (a[++less] < pivot1);
while (a[--great] > pivot2);

7. 接着定义指针k从less-1开始向右遍历至great,把小于pivot1的元素移动到less左边,大于pivot2的元素移动到great右边。这里要注意,我们已知great处的元素小于pivot2,但是它于pivot1的大小关系,还需要进行判断,如果比pivot1还小,需要移动到到less左边,否则只需要交换到k处。

			/*
 * Partitioning:
 *
 *   left part   center part   right part
 * +--------------------------------------------------------------+
 * |  < pivot1  |  pivot1 <= && <= pivot2  |?|  > pivot2  |
 * +--------------------------------------------------------------+
 *   ^  ^   ^
 *   |  |   |
 *  lessk great
 *
 * Invariants:
 *
 *  all in (left, less)   < pivot1
 *pivot1 <= all in [less, k) <= pivot2
 *  all in (great, right) > pivot2
 *
 * Pointer k is the first index of ?-part.
 */
outer:
for (int k = less - 1; ++k <= great; ) {
short ak = a[k];
if (ak < pivot1) { // Move a[k] to left part
a[k] = a[less];
/*
 * Here and below we use "a[i] = b; i++;" instead
 * of "a[i++] = b;" due to performance issue.
 */
a[less] = ak;
++less;
} else if (ak > pivot2) { // Move a[k] to right part
while (a[great] > pivot2) {
if (great-- == k) {
break outer;
}
}
if (a[great] < pivot1) { // a[great] <= pivot2
a[k] = a[less];
a[less] = a[great];
++less;
} else { // pivot1 <= a[great] <= pivot2
a[k] = a[great];
}
/*
 * Here and below we use "a[i] = b; i--;" instead
 * of "a[i--] = b;" due to performance issue.
 */
a[great] = ak;
--great;
}
}

8. 将枢轴交换到它们的最终位置

	// Swap pivots into their final positions
a[left]  = a[less  - 1]; a[less  - 1] = pivot1;
a[right] = a[great + 1]; a[great + 1] = pivot2;

9. 递归排序左右部分,不包括已知的枢轴

		// Sort left and right parts recursively, excluding known pivots
sort(a, left, less - 2, leftmost);
sort(a, great + 2, right, false);

10. 对于中间的部分,如果大于4/7的数组长度,递归中间部分

			/*
 * If center part is too large (comprises > 4/7 of the array),
 * swap internal pivot values to ends.
 */
if (less < e1 && e5 < great) {
/*
 * Skip elements, which are equal to pivot values.
 */
while (a[less] == pivot1) {
++less;
}

while (a[great] == pivot2) {
--great;
}

/*
 * Partitioning:
 *
 *   left part center part  right part
 * +----------------------------------------------------------+
 * | == pivot1 |  pivot1 < && < pivot2  |?| == pivot2 |
 * +----------------------------------------------------------+
 *  ^^   ^
 *  ||   |
 * less  k great
 *
 * Invariants:
 *
 *  all in (*,  less) == pivot1
 * pivot1 < all in [less,  k)  < pivot2
 *  all in (great, *) == pivot2
 *
 * Pointer k is the first index of ?-part.
 */
outer:
for (int k = less - 1; ++k <= great; ) {
short ak = a[k];
if (ak == pivot1) { // Move a[k] to left part
a[k] = a[less];
a[less] = ak;
++less;
} else if (ak == pivot2) { // Move a[k] to right part
while (a[great] == pivot2) {
if (great-- == k) {
break outer;
}
}
if (a[great] == pivot1) { // a[great] < pivot2
a[k] = a[less];
/*
 * Even though a[great] equals to pivot1, the
 * assignment a[less] = pivot1 may be incorrect,
 * if a[great] and pivot1 are floating-point zeros
 * of different signs. Therefore in float and
 * double sorting methods we have to use more
 * accurate assignment a[less] = a[great].
 */
a[less] = pivot1;
++less;
} else { // pivot1 < a[great] < pivot2
a[k] = a[great];
}
a[great] = ak;
--great;
}
}
}

// Sort center part recursively
sort(a, less, great, false);

4 小结

Arrays.sort对升序数组、降序数组和重复数组的排序效率有了很大的提升,这里面有几个重大的优化。

  • 对于小数组来说,插入排序效率更高,每次递归到小于47的大小时,用插入排序代替快排,明显提升了性能。
  • 双轴快排使用两个pivot,每轮把数组分成3段,在没有明显增加比较次数的情况下巧妙地减少了递归次数。
  • pivot的选择上增加了随机性,却没有带来随机数的开销。
  • 对重复数据进行了优化处理,避免了不必要交换和递归。